Aggregate Production Planning

Dr. Nitin Seth Associate Professor, IIFT, New Delhi

Overview of Planning Levels

- Long-range plans
 - Product and service design
 - Location / layout
 - Long term capacity
- Intermediate plans (General levels)
 - Employment
 - Output and inventories
 - Subcontracting and backorders
- Short-range plans (Detailed plans)
 - Machine loading
 - Job assignments
 - Production lot size and order quantities

Capacity Options

- Hire and layoff workers
- Overtime/slack time
- Part-time workers
- Inventories
- Subcontracting

Level Approach

- Advantages
 - Stable output rates and workforce
- Disadvantages
 - Greater inventory costs
 - Increased overtime and idle time
 - Resource utilizations vary over time

Aggregate Planning Strategies

Strategy	Possible Alternatives during Slack Season	Possible Alternatives during Peak Season
1. Chase #1: vary workforce level to match demand	Layoffs	Hiring
2. Chase #2: vary output rate to match demand	Layoffs, undertime, vacations	Hiring, overtime, subcontracting
3. Level #1: constant workforce level	No layoffs, building anticipation inventory, undertime, vacations	No hiring, depleting anticipation inventory, overtime, subcontracting, backorders, stockouts
4. Level #2: constant output rate	Layoffs, building antici- pation inventory, undertime, vacations	Hiring, depleting antici- pation inventory, over- time, subcontracting, backorders, stockouts

Disag	gregating t	he Ag	greg	ate
Aggregate plan	Dlor Month Planned output*	Jan. 200	Feb. 300	<i>Mar.</i> 400
*Aggregate unit	s			
Master schedule	Month Planned output*	Jan.	Feb.	Mar.
	Push	100	100	100
	Self-propelled	75	150	200
	Riding	25	50	100
	Total	200	300	400
*Actual units				

Disaggregating the Aggregate Plan

- **Master schedule:** The result of disaggregating an aggregate plan; shows quantity and timing of specific end items for a scheduled horizon.
- **Rough-cut capacity planning:** Approximate balancing of capacity and demand to test the feasibility of a master schedule.

Lessons

- Aggregate production planning is a powerful tool for resources management
- Suitable aggregate production planning strategy for an organization depends on various organizational and environmental factors

Supply Management: Objectives

- Support the operational requirements
- Effectively and efficiently manage the suppliers and related process.
- Understand the methodology for selection/evaluation of suppliers
- Develop strategies that improves supply chain efficiency and effectiveness

Process of Buying

- Obtaining the right material
- In Right quantities
- With right delivery (time and place)
- From the right source
- and at the right price

Sourcing Decisions: The Make-or-Buy Decision

 Outsourcing -buying materials and components from suppliers instead of making them in-house. The trend has moved toward outsourcing.

The Make or Buy decision is a strategic decision.

Sourcing Decisions: The Make-or-Buy Decision- Cont.

Reasons for Buying or Outsourcing

- 1. Cost advantage
- 2. Insufficient capacity
- 3. Lack of expertise
- 4. Quality

Sourcing Decisions: The Make-or-Buy Decision- Cont.

Reasons for Making

- Protect proprietary technology
- No competent supplier
- Better quality control
- Use existing idle capacity
- Control of logistics- lead-time transportation, and warehousing cost

How Many Suppliers to Use

Single-sourcing- a risky proposition. Although trends favor fewer sources, avoid single source.

Reasons Favoring a Single Supplier

- To establish a good relationship
- Less quality variability
- Lower cost
- Transportation
 economies
- Proprietary product or process
- Volume too small to

Reasons Favoring More than One Supplier

- Need capacity
- Spread risk of supply interruption
- Create competition
- Information
- Dealing with special kinds of business

Supplier Selection and evaluation

The process of selecting suppliers, is complex and should be based on multiple criteria:

- Technical ability
- Manufacturing capability
- Quality
- Cost
- Reliability

- Order System and cycle time
- Capacity
- Price
- Location
- Service

OTHER PRACTICAL CONSIDERATIONS

Supplier Evaluation Cont.

Performance Measure	Rating	×	Weight	=	Final Value
Technology	80		0.10		8.00
Quality	90		0.25		22.50
Responsiveness	95		0.15		14.25
Delivery	90		0.15		13.50
Cost	80		0.15		12.00
Environmental	90		0.05		4.50
Business	90		0.15		13.50
	Total score		1.00		88.25
Note: Based on the total score of 88.25	5 the XYZ Company is consid	ered a certif	ied supplier		

Global Process Design & Technology

- Information technology enables management of integrated, globally dispersed operation
- Texas Instruments: 50 plants in 19 countries
- Hewlett-Packard product development teams in U.S., Japan, Great Britain, and Germany
- Reduces time-to-market

Examples of Global Strategies

- Boeing both sales and production are worldwide.
- Sony purchases components from suppliers in Thailand, Malaysia, and around the world.
- GM is building four similar plants in Argentina, Poland, China, and Thailand

Bo	eing 777	Supplier		
Firm	Country	Parts		
Alenia	Italy	Wing flaps		
AeroSpace	Australia	Rudder		
CASA	Spain	Ailerons		
Fuji	Japan	Landing gear doors, wing section		
GEC Avionics	United Kingdom	Flight computers		
Korean Air	Korea	Flap supports		
Menasco Aerospace	Canada	Landing gears		
Short Brothers	Ireland	Landing gear doors		
Singapore Aerospace	Singapore	Landing gear doors		

Management of Suppliers and Distributors

- Plans to help achieve company mission
- Affect long-term competitive position
- Strategic options
 - Few suppliers
 - Keiretsu network
 - Local/Global Suppliers

Keiretsu network : Supplier as Partner Case Volkswagen

- · Brazilian plant employs 1000 workers
 - 200 work for VW
 - 800 work for other contractors:
 - Rockwell International, Cummins Engines, Deluge Automotiva, MWM, Remon and VDO, etc.
- VW responsible for overall quality, marketing, research and design

Learning's : Eicher Motors Pithampur

Suppliers to work on shop floor to deliver product

Strategic Alliance and Supplier Certification Programs

Supplier certification programs -one way to identify strategic alliance candidates.

-Firms often develop their own formal certification programs, & most require *ISO 9000* or similar certifications as one part of the certification process.

Early Supplier Involvement

Early supplier involvement (ESI) is perhaps one of the most effective supply chain integrative techniques.

Under ESI, key suppliers become more involved in the internal operations of the firm, particularly with respect to new product and process design and *design for manufacturability* techniques.

Value engineering activities help the firm to reduce cost, improve quality, and reduce new product development time.

e-Procurement Systems

E-procurement systems enable the concentration of a large volume of small purchases with a few suppliers in *electronic catalogues*, which are made available to the organization's users.

Reverse auctions- suppliers enter Web site. At a pre-designated time and date, qualified suppliers try to underbid their competitors and can monitor the bid prices until the session is over.

Lessons:: Key for successful partnerships

- Building Trust
- · Shared Vision and objectives
- Personal Relationships
- Mutual benefits
- Commitment and Top management Support
- Change Management
- Information Sharing
- Shared Measurements
- Continuous Improvements

- Supplier plays an important role in improving the efficiency and effectiveness of supply chain
- Selection and evaluation is a strategic decision
- Effective and efficient partnership rests on the pillars of trust.

